ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftel Unicode version

Theorem fliftel 5694
Description: Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftel  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
Distinct variable groups:    x, C    x, R    x, D    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftel
StepHypRef Expression
1 df-br 3930 . . . 4  |-  ( C F D  <->  <. C ,  D >.  e.  F )
2 flift.1 . . . . 5  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
32eleq2i 2206 . . . 4  |-  ( <. C ,  D >.  e.  F  <->  <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. ) )
41, 3bitri 183 . . 3  |-  ( C F D  <->  <. C ,  D >.  e.  ran  (
x  e.  X  |->  <. A ,  B >. ) )
5 flift.2 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
6 flift.3 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
7 opexg 4150 . . . . . 6  |-  ( ( A  e.  R  /\  B  e.  S )  -> 
<. A ,  B >.  e. 
_V )
85, 6, 7syl2anc 408 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  <. A ,  B >.  e.  _V )
98ralrimiva 2505 . . . 4  |-  ( ph  ->  A. x  e.  X  <. A ,  B >.  e. 
_V )
10 eqid 2139 . . . . 5  |-  ( x  e.  X  |->  <. A ,  B >. )  =  ( x  e.  X  |->  <. A ,  B >. )
1110elrnmptg 4791 . . . 4  |-  ( A. x  e.  X  <. A ,  B >.  e.  _V  ->  ( <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. )  <->  E. x  e.  X  <. C ,  D >.  =  <. A ,  B >. ) )
129, 11syl 14 . . 3  |-  ( ph  ->  ( <. C ,  D >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. )  <->  E. x  e.  X  <. C ,  D >.  =  <. A ,  B >. ) )
134, 12syl5bb 191 . 2  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  <. C ,  D >.  = 
<. A ,  B >. ) )
14 opthg2 4161 . . . 4  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( <. C ,  D >.  =  <. A ,  B >.  <-> 
( C  =  A  /\  D  =  B ) ) )
155, 6, 14syl2anc 408 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( <. C ,  D >.  = 
<. A ,  B >.  <->  ( C  =  A  /\  D  =  B )
) )
1615rexbidva 2434 . 2  |-  ( ph  ->  ( E. x  e.  X  <. C ,  D >.  =  <. A ,  B >.  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
1713, 16bitrd 187 1  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   _Vcvv 2686   <.cop 3530   class class class wbr 3929    |-> cmpt 3989   ran crn 4540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-mpt 3991  df-cnv 4547  df-dm 4549  df-rn 4550
This theorem is referenced by:  fliftcnv  5696  fliftfun  5697  fliftf  5700  fliftval  5701  qliftel  6509
  Copyright terms: Public domain W3C validator