ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0add Unicode version

Theorem gt0add 8335
Description: A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.)
Assertion
Ref Expression
gt0add  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  A  \/  0  <  B ) )

Proof of Theorem gt0add
StepHypRef Expression
1 simp3 983 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  0  <  ( A  +  B
) )
2 0red 7767 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  0  e.  RR )
3 simp1 981 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  A  e.  RR )
4 simp2 982 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  B  e.  RR )
53, 4readdcld 7795 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  ( A  +  B )  e.  RR )
6 axltwlin 7832 . . . 4  |-  ( ( 0  e.  RR  /\  ( A  +  B
)  e.  RR  /\  A  e.  RR )  ->  ( 0  <  ( A  +  B )  ->  ( 0  <  A  \/  A  <  ( A  +  B ) ) ) )
72, 5, 3, 6syl3anc 1216 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  ( A  +  B )  ->  (
0  <  A  \/  A  <  ( A  +  B ) ) ) )
81, 7mpd 13 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  A  \/  A  <  ( A  +  B ) ) )
94, 3ltaddposd 8291 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  B  <->  A  <  ( A  +  B ) ) )
109orbi2d 779 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
( 0  <  A  \/  0  <  B )  <-> 
( 0  <  A  \/  A  <  ( A  +  B ) ) ) )
118, 10mpbird 166 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B
) )  ->  (
0  <  A  \/  0  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 697    /\ w3a 962    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   RRcr 7619   0cc0 7620    + caddc 7623    < clt 7800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-pre-ltwlin 7733  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-iota 5088  df-fv 5131  df-ov 5777  df-pnf 7802  df-mnf 7803  df-ltxr 7805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator