ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexabim Unicode version

Theorem intexabim 3934
Description: The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexabim  |-  ( E. x ph  ->  |^| { x  |  ph }  e.  _V )

Proof of Theorem intexabim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 abid 2044 . . 3  |-  ( x  e.  { x  | 
ph }  <->  ph )
21exbii 1512 . 2  |-  ( E. x  x  e.  {
x  |  ph }  <->  E. x ph )
3 nfsab1 2046 . . . 4  |-  F/ x  y  e.  { x  |  ph }
4 nfv 1437 . . . 4  |-  F/ y  x  e.  { x  |  ph }
5 eleq1 2116 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  x  e.  { x  |  ph }
) )
63, 4, 5cbvex 1655 . . 3  |-  ( E. y  y  e.  {
x  |  ph }  <->  E. x  x  e.  {
x  |  ph }
)
7 inteximm 3931 . . 3  |-  ( E. y  y  e.  {
x  |  ph }  ->  |^| { x  | 
ph }  e.  _V )
86, 7sylbir 129 . 2  |-  ( E. x  x  e.  {
x  |  ph }  ->  |^| { x  | 
ph }  e.  _V )
92, 8sylbir 129 1  |-  ( E. x ph  ->  |^| { x  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1397    e. wcel 1409   {cab 2042   _Vcvv 2574   |^|cint 3643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-in 2952  df-ss 2959  df-int 3644
This theorem is referenced by:  intexrabim  3935  omex  4344
  Copyright terms: Public domain W3C validator