ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunss Unicode version

Theorem iunss 3721
Description: Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss  |-  ( U_ x  e.  A  B  C_  C  <->  A. x  e.  A  B  C_  C )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem iunss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iun 3682 . . 3  |-  U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
21sseq1i 3024 . 2  |-  ( U_ x  e.  A  B  C_  C  <->  { y  |  E. x  e.  A  y  e.  B }  C_  C
)
3 abss 3064 . 2  |-  ( { y  |  E. x  e.  A  y  e.  B }  C_  C  <->  A. y
( E. x  e.  A  y  e.  B  ->  y  e.  C ) )
4 dfss2 2989 . . . 4  |-  ( B 
C_  C  <->  A. y
( y  e.  B  ->  y  e.  C ) )
54ralbii 2373 . . 3  |-  ( A. x  e.  A  B  C_  C  <->  A. x  e.  A  A. y ( y  e.  B  ->  y  e.  C ) )
6 ralcom4 2622 . . 3  |-  ( A. x  e.  A  A. y ( y  e.  B  ->  y  e.  C )  <->  A. y A. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
7 r19.23v 2470 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  C )  <-> 
( E. x  e.  A  y  e.  B  ->  y  e.  C ) )
87albii 1400 . . 3  |-  ( A. y A. x  e.  A  ( y  e.  B  ->  y  e.  C )  <->  A. y ( E. x  e.  A  y  e.  B  ->  y  e.  C
) )
95, 6, 83bitrri 205 . 2  |-  ( A. y ( E. x  e.  A  y  e.  B  ->  y  e.  C
)  <->  A. x  e.  A  B  C_  C )
102, 3, 93bitri 204 1  |-  ( U_ x  e.  A  B  C_  C  <->  A. x  e.  A  B  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1283    e. wcel 1434   {cab 2068   A.wral 2349   E.wrex 2350    C_ wss 2974   U_ciun 3680
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-in 2980  df-ss 2987  df-iun 3682
This theorem is referenced by:  iunss2  3725  djussxp  4503  fun11iun  5172
  Copyright terms: Public domain W3C validator