ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpintm Unicode version

Theorem ixpintm 6619
Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpintm  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^| B  =  |^|_ y  e.  B  X_ x  e.  A  y )
Distinct variable groups:    x, y, A   
x, B, y    y,
z, B
Allowed substitution hint:    A( z)

Proof of Theorem ixpintm
StepHypRef Expression
1 ixpeq2 6606 . . 3  |-  ( A. x  e.  A  |^| B  =  |^|_ y  e.  B  y  ->  X_ x  e.  A  |^| B  = 
X_ x  e.  A  |^|_ y  e.  B  y )
2 intiin 3867 . . . 4  |-  |^| B  =  |^|_ y  e.  B  y
32a1i 9 . . 3  |-  ( x  e.  A  ->  |^| B  =  |^|_ y  e.  B  y )
41, 3mprg 2489 . 2  |-  X_ x  e.  A  |^| B  = 
X_ x  e.  A  |^|_ y  e.  B  y
5 ixpiinm 6618 . 2  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^|_ y  e.  B  y  =  |^|_ y  e.  B  X_ x  e.  A  y )
64, 5syl5eq 2184 1  |-  ( E. z  z  e.  B  -> 
X_ x  e.  A  |^| B  =  |^|_ y  e.  B  X_ x  e.  A  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331   E.wex 1468    e. wcel 1480   |^|cint 3771   |^|_ciin 3814   X_cixp 6592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iin 3816  df-br 3930  df-opab 3990  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-ixp 6593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator