ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neitx Unicode version

Theorem neitx 12437
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypotheses
Ref Expression
neitx.x  |-  X  = 
U. J
neitx.y  |-  Y  = 
U. K
Assertion
Ref Expression
neitx  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) ) )

Proof of Theorem neitx
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neitx.x . . . . . 6  |-  X  = 
U. J
21neii1 12316 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  A  C_  X )
32ad2ant2r 500 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  A  C_  X )
4 neitx.y . . . . . 6  |-  Y  = 
U. K
54neii1 12316 . . . . 5  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  B  C_  Y )
65ad2ant2l 499 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  B  C_  Y )
7 xpss12 4646 . . . 4  |-  ( ( A  C_  X  /\  B  C_  Y )  -> 
( A  X.  B
)  C_  ( X  X.  Y ) )
83, 6, 7syl2anc 408 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  C_  ( X  X.  Y
) )
91, 4txuni 12432 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( X  X.  Y
)  =  U. ( J  tX  K ) )
109adantr 274 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( X  X.  Y )  = 
U. ( J  tX  K ) )
118, 10sseqtrd 3135 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  C_  U. ( J  tX  K
) )
12 simp-5l 532 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( J  e.  Top  /\  K  e. 
Top ) )
13 simp-4r 531 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  a  e.  J )
14 simplr 519 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  b  e.  K )
15 txopn 12434 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( a  e.  J  /\  b  e.  K
) )  ->  (
a  X.  b )  e.  ( J  tX  K ) )
1612, 13, 14, 15syl12anc 1214 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( a  X.  b )  e.  ( J  tX  K ) )
17 simpr1l 1038 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  (
( C  C_  a  /\  a  C_  A )  /\  b  e.  K  /\  ( D  C_  b  /\  b  C_  B ) ) )  ->  C  C_  a )
18173anassrs 1207 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  C  C_  a
)
19 simprl 520 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  D  C_  b
)
20 xpss12 4646 . . . . . 6  |-  ( ( C  C_  a  /\  D  C_  b )  -> 
( C  X.  D
)  C_  ( a  X.  b ) )
2118, 19, 20syl2anc 408 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( C  X.  D )  C_  (
a  X.  b ) )
22 simpr1r 1039 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  (
( C  C_  a  /\  a  C_  A )  /\  b  e.  K  /\  ( D  C_  b  /\  b  C_  B ) ) )  ->  a  C_  A )
23223anassrs 1207 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  a  C_  A )
24 simprr 521 . . . . . 6  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  b  C_  B )
25 xpss12 4646 . . . . . 6  |-  ( ( a  C_  A  /\  b  C_  B )  -> 
( a  X.  b
)  C_  ( A  X.  B ) )
2623, 24, 25syl2anc 408 . . . . 5  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  ( a  X.  b )  C_  ( A  X.  B ) )
27 sseq2 3121 . . . . . . 7  |-  ( c  =  ( a  X.  b )  ->  (
( C  X.  D
)  C_  c  <->  ( C  X.  D )  C_  (
a  X.  b ) ) )
28 sseq1 3120 . . . . . . 7  |-  ( c  =  ( a  X.  b )  ->  (
c  C_  ( A  X.  B )  <->  ( a  X.  b )  C_  ( A  X.  B ) ) )
2927, 28anbi12d 464 . . . . . 6  |-  ( c  =  ( a  X.  b )  ->  (
( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) )  <-> 
( ( C  X.  D )  C_  (
a  X.  b )  /\  ( a  X.  b )  C_  ( A  X.  B ) ) ) )
3029rspcev 2789 . . . . 5  |-  ( ( ( a  X.  b
)  e.  ( J 
tX  K )  /\  ( ( C  X.  D )  C_  (
a  X.  b )  /\  ( a  X.  b )  C_  ( A  X.  B ) ) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
3116, 21, 26, 30syl12anc 1214 . . . 4  |-  ( ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  /\  b  e.  K )  /\  ( D  C_  b  /\  b  C_  B ) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
32 neii2 12318 . . . . . 6  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3332ad2ant2l 499 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3433ad2antrr 479 . . . 4  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  ->  E. b  e.  K  ( D  C_  b  /\  b  C_  B ) )
3531, 34r19.29a 2575 . . 3  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  ( ( nei `  K
) `  D )
) )  /\  a  e.  J )  /\  ( C  C_  a  /\  a  C_  A ) )  ->  E. c  e.  ( J  tX  K ) ( ( C  X.  D
)  C_  c  /\  c  C_  ( A  X.  B ) ) )
36 neii2 12318 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  E. a  e.  J  ( C  C_  a  /\  a  C_  A ) )
3736ad2ant2r 500 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. a  e.  J  ( C  C_  a  /\  a  C_  A ) )
3835, 37r19.29a 2575 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) )
39 txtop 12429 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  e.  Top )
4039adantr 274 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( J  tX  K )  e. 
Top )
411neiss2 12311 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  ( ( nei `  J ) `  C ) )  ->  C  C_  X )
4241ad2ant2r 500 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  C  C_  X )
434neiss2 12311 . . . . . 6  |-  ( ( K  e.  Top  /\  B  e.  ( ( nei `  K ) `  D ) )  ->  D  C_  Y )
4443ad2ant2l 499 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  D  C_  Y )
45 xpss12 4646 . . . . 5  |-  ( ( C  C_  X  /\  D  C_  Y )  -> 
( C  X.  D
)  C_  ( X  X.  Y ) )
4642, 44, 45syl2anc 408 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( C  X.  D )  C_  ( X  X.  Y
) )
4746, 10sseqtrd 3135 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( C  X.  D )  C_  U. ( J  tX  K
) )
48 eqid 2139 . . . 4  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
4948isnei 12313 . . 3  |-  ( ( ( J  tX  K
)  e.  Top  /\  ( C  X.  D
)  C_  U. ( J  tX  K ) )  ->  ( ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) )  <->  ( ( A  X.  B )  C_  U. ( J  tX  K
)  /\  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) ) ) )
5040, 47, 49syl2anc 408 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  (
( A  X.  B
)  e.  ( ( nei `  ( J 
tX  K ) ) `
 ( C  X.  D ) )  <->  ( ( A  X.  B )  C_  U. ( J  tX  K
)  /\  E. c  e.  ( J  tX  K
) ( ( C  X.  D )  C_  c  /\  c  C_  ( A  X.  B ) ) ) ) )
5111, 38, 50mpbir2and 928 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J
) `  C )  /\  B  e.  (
( nei `  K
) `  D )
) )  ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `
 ( C  X.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2417    C_ wss 3071   U.cuni 3736    X. cxp 4537   ` cfv 5123  (class class class)co 5774   Topctop 12164   neicnei 12307    tX ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-topgen 12141  df-top 12165  df-topon 12178  df-bases 12210  df-nei 12308  df-tx 12422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator