ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pocl Unicode version

Theorem pocl 4225
Description: Properties of partial order relation in class notation. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
pocl  |-  ( R  Po  A  ->  (
( B  e.  A  /\  C  e.  A  /\  D  e.  A
)  ->  ( -.  B R B  /\  (
( B R C  /\  C R D )  ->  B R D ) ) ) )

Proof of Theorem pocl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . . 7  |-  ( x  =  B  ->  x  =  B )
21, 1breq12d 3942 . . . . . 6  |-  ( x  =  B  ->  (
x R x  <->  B R B ) )
32notbid 656 . . . . 5  |-  ( x  =  B  ->  ( -.  x R x  <->  -.  B R B ) )
4 breq1 3932 . . . . . . 7  |-  ( x  =  B  ->  (
x R y  <->  B R
y ) )
54anbi1d 460 . . . . . 6  |-  ( x  =  B  ->  (
( x R y  /\  y R z )  <->  ( B R y  /\  y R z ) ) )
6 breq1 3932 . . . . . 6  |-  ( x  =  B  ->  (
x R z  <->  B R
z ) )
75, 6imbi12d 233 . . . . 5  |-  ( x  =  B  ->  (
( ( x R y  /\  y R z )  ->  x R z )  <->  ( ( B R y  /\  y R z )  ->  B R z ) ) )
83, 7anbi12d 464 . . . 4  |-  ( x  =  B  ->  (
( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( -.  B R B  /\  ( ( B R y  /\  y R z )  ->  B R z ) ) ) )
98imbi2d 229 . . 3  |-  ( x  =  B  ->  (
( R  Po  A  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )  <->  ( R  Po  A  ->  ( -.  B R B  /\  (
( B R y  /\  y R z )  ->  B R
z ) ) ) ) )
10 breq2 3933 . . . . . . 7  |-  ( y  =  C  ->  ( B R y  <->  B R C ) )
11 breq1 3932 . . . . . . 7  |-  ( y  =  C  ->  (
y R z  <->  C R
z ) )
1210, 11anbi12d 464 . . . . . 6  |-  ( y  =  C  ->  (
( B R y  /\  y R z )  <->  ( B R C  /\  C R z ) ) )
1312imbi1d 230 . . . . 5  |-  ( y  =  C  ->  (
( ( B R y  /\  y R z )  ->  B R z )  <->  ( ( B R C  /\  C R z )  ->  B R z ) ) )
1413anbi2d 459 . . . 4  |-  ( y  =  C  ->  (
( -.  B R B  /\  ( ( B R y  /\  y R z )  ->  B R z ) )  <-> 
( -.  B R B  /\  ( ( B R C  /\  C R z )  ->  B R z ) ) ) )
1514imbi2d 229 . . 3  |-  ( y  =  C  ->  (
( R  Po  A  ->  ( -.  B R B  /\  ( ( B R y  /\  y R z )  ->  B R z ) ) )  <->  ( R  Po  A  ->  ( -.  B R B  /\  (
( B R C  /\  C R z )  ->  B R
z ) ) ) ) )
16 breq2 3933 . . . . . . 7  |-  ( z  =  D  ->  ( C R z  <->  C R D ) )
1716anbi2d 459 . . . . . 6  |-  ( z  =  D  ->  (
( B R C  /\  C R z )  <->  ( B R C  /\  C R D ) ) )
18 breq2 3933 . . . . . 6  |-  ( z  =  D  ->  ( B R z  <->  B R D ) )
1917, 18imbi12d 233 . . . . 5  |-  ( z  =  D  ->  (
( ( B R C  /\  C R z )  ->  B R z )  <->  ( ( B R C  /\  C R D )  ->  B R D ) ) )
2019anbi2d 459 . . . 4  |-  ( z  =  D  ->  (
( -.  B R B  /\  ( ( B R C  /\  C R z )  ->  B R z ) )  <-> 
( -.  B R B  /\  ( ( B R C  /\  C R D )  ->  B R D ) ) ) )
2120imbi2d 229 . . 3  |-  ( z  =  D  ->  (
( R  Po  A  ->  ( -.  B R B  /\  ( ( B R C  /\  C R z )  ->  B R z ) ) )  <->  ( R  Po  A  ->  ( -.  B R B  /\  (
( B R C  /\  C R D )  ->  B R D ) ) ) ) )
22 df-po 4218 . . . . . . . 8  |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
23 r3al 2477 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
2422, 23bitri 183 . . . . . . 7  |-  ( R  Po  A  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
2524biimpi 119 . . . . . 6  |-  ( R  Po  A  ->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
262519.21bbi 1538 . . . . 5  |-  ( R  Po  A  ->  A. z
( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
272619.21bi 1537 . . . 4  |-  ( R  Po  A  ->  (
( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
2827com12 30 . . 3  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( R  Po  A  ->  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
299, 15, 21, 28vtocl3ga 2756 . 2  |-  ( ( B  e.  A  /\  C  e.  A  /\  D  e.  A )  ->  ( R  Po  A  ->  ( -.  B R B  /\  ( ( B R C  /\  C R D )  ->  B R D ) ) ) )
3029com12 30 1  |-  ( R  Po  A  ->  (
( B  e.  A  /\  C  e.  A  /\  D  e.  A
)  ->  ( -.  B R B  /\  (
( B R C  /\  C R D )  ->  B R D ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 962   A.wal 1329    = wceq 1331    e. wcel 1480   A.wral 2416   class class class wbr 3929    Po wpo 4216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-po 4218
This theorem is referenced by:  poirr  4229  potr  4230
  Copyright terms: Public domain W3C validator