Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spc2ev Unicode version

Theorem spc2ev 2694
 Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
Hypotheses
Ref Expression
spc2ev.1
spc2ev.2
spc2ev.3
Assertion
Ref Expression
spc2ev
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)

Proof of Theorem spc2ev
StepHypRef Expression
1 spc2ev.1 . 2
2 spc2ev.2 . 2
3 spc2ev.3 . . 3
43spc2egv 2688 . 2
51, 2, 4mp2an 417 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wb 103   wceq 1285  wex 1422   wcel 1434  cvv 2602 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-v 2604 This theorem is referenced by:  relop  4514  th3qlem2  6275  endisj  6368  axcnre  7109
 Copyright terms: Public domain W3C validator