ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiin Unicode version

Theorem ssiin 3735
Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
ssiin  |-  ( C 
C_  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  C  C_  B )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem ssiin
StepHypRef Expression
1 nfcv 2194 . 2  |-  F/_ x C
21ssiinf 3734 1  |-  ( C 
C_  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  C  C_  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 102   A.wral 2323    C_ wss 2945   |^|_ciin 3686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576  df-in 2952  df-ss 2959  df-iin 3688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator