ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiinf Unicode version

Theorem ssiinf 3734
Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
ssiinf.1  |-  F/_ x C
Assertion
Ref Expression
ssiinf  |-  ( C 
C_  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  C  C_  B )

Proof of Theorem ssiinf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2577 . . . . 5  |-  y  e. 
_V
2 eliin 3690 . . . . 5  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  y  e.  B ) )
31, 2ax-mp 7 . . . 4  |-  ( y  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  y  e.  B )
43ralbii 2347 . . 3  |-  ( A. y  e.  C  y  e.  |^|_ x  e.  A  B 
<-> 
A. y  e.  C  A. x  e.  A  y  e.  B )
5 ssiinf.1 . . . 4  |-  F/_ x C
6 nfcv 2194 . . . 4  |-  F/_ y A
75, 6ralcomf 2488 . . 3  |-  ( A. y  e.  C  A. x  e.  A  y  e.  B  <->  A. x  e.  A  A. y  e.  C  y  e.  B )
84, 7bitri 177 . 2  |-  ( A. y  e.  C  y  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  A. y  e.  C  y  e.  B )
9 dfss3 2963 . 2  |-  ( C 
C_  |^|_ x  e.  A  B 
<-> 
A. y  e.  C  y  e.  |^|_ x  e.  A  B )
10 dfss3 2963 . . 3  |-  ( C 
C_  B  <->  A. y  e.  C  y  e.  B )
1110ralbii 2347 . 2  |-  ( A. x  e.  A  C  C_  B  <->  A. x  e.  A  A. y  e.  C  y  e.  B )
128, 9, 113bitr4i 205 1  |-  ( C 
C_  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  C  C_  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 102    e. wcel 1409   F/_wnfc 2181   A.wral 2323   _Vcvv 2574    C_ wss 2945   |^|_ciin 3686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576  df-in 2952  df-ss 2959  df-iin 3688
This theorem is referenced by:  ssiin  3735  dmiin  4608
  Copyright terms: Public domain W3C validator