![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0inp0 | GIF version |
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.) |
Ref | Expression |
---|---|
0inp0 | ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 3947 | . . 3 ⊢ ∅ ≠ {∅} | |
2 | neeq1 2259 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅})) | |
3 | 1, 2 | mpbiri 166 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≠ {∅}) |
4 | 3 | neneqd 2267 | 1 ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1285 ≠ wne 2246 ∅c0 3258 {csn 3406 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-nul 3912 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-v 2604 df-dif 2976 df-nul 3259 df-sn 3412 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |