![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axpow3 | GIF version |
Description: A variant of the Axiom of Power Sets ax-pow 3969. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
axpow3 | ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axpow2 3971 | . . 3 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
2 | 1 | bm1.3ii 3920 | . 2 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) |
3 | bicom 138 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) | |
4 | 3 | albii 1400 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
5 | 4 | exbii 1537 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
6 | 2, 5 | mpbir 144 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∀wal 1283 ∃wex 1422 ⊆ wss 2983 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-in 2989 df-ss 2996 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |