Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimp3a GIF version

Theorem biimp3a 1277
 Description: Infer implication from a logical equivalence. Similar to biimpa 290. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3a ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem biimp3a
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21biimpa 290 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
323impa 1134 1 ((𝜑𝜓𝜒) → 𝜃)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   ∧ w3a 920 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106 This theorem depends on definitions:  df-bi 115  df-3an 922 This theorem is referenced by:  nnawordex  6189  nn0addge1  8471  nn0addge2  8472  nn0sub2  8572  eluzp1p1  8795  uznn0sub  8801  iocssre  9122  icossre  9123  iccssre  9124  lincmb01cmp  9171  iccf1o  9172  fzosplitprm1  9390  subfzo0  9398  modfzo0difsn  9547  fldivndvdslt  10560  hashgcdlem  10828
 Copyright terms: Public domain W3C validator