ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccf1o GIF version

Theorem iccf1o 8972
Description: Describe a bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵]. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
iccf1o.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
Assertion
Ref Expression
iccf1o ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem iccf1o
StepHypRef Expression
1 iccf1o.1 . 2 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
2 0re 7084 . . . . . . . . 9 0 ∈ ℝ
3 1re 7083 . . . . . . . . 9 1 ∈ ℝ
42, 3elicc2i 8908 . . . . . . . 8 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
54simp1bi 930 . . . . . . 7 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℝ)
65adantl 266 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℝ)
76recnd 7112 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
8 simpl2 919 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐵 ∈ ℝ)
98recnd 7112 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐵 ∈ ℂ)
107, 9mulcld 7104 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · 𝐵) ∈ ℂ)
11 ax-1cn 7034 . . . . . 6 1 ∈ ℂ
12 subcl 7272 . . . . . 6 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
1311, 7, 12sylancr 399 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (1 − 𝑥) ∈ ℂ)
14 simpl1 918 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐴 ∈ ℝ)
1514recnd 7112 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
1613, 15mulcld 7104 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) ∈ ℂ)
1710, 16addcomd 7224 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) = (((1 − 𝑥) · 𝐴) + (𝑥 · 𝐵)))
18 lincmb01cmp 8971 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (((1 − 𝑥) · 𝐴) + (𝑥 · 𝐵)) ∈ (𝐴[,]𝐵))
1917, 18eqeltrd 2130 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) ∈ (𝐴[,]𝐵))
20 simpr 107 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
21 simpl1 918 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
22 simpl2 919 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
23 elicc2 8907 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
24233adant3 935 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2524biimpa 284 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
2625simp1d 927 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
27 eqid 2056 . . . . . . 7 (𝐴𝐴) = (𝐴𝐴)
28 eqid 2056 . . . . . . 7 (𝐵𝐴) = (𝐵𝐴)
2927, 28iccshftl 8964 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴))))
3021, 22, 26, 21, 29syl22anc 1147 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴))))
3120, 30mpbid 139 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ((𝐴𝐴)[,](𝐵𝐴)))
3226, 21resubcld 7450 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ℝ)
3332recnd 7112 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦𝐴) ∈ ℂ)
34 difrp 8716 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
3534biimp3a 1251 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
3635adantr 265 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) ∈ ℝ+)
3736rpcnd 8721 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) ∈ ℂ)
38 rpap0 8696 . . . . . 6 ((𝐵𝐴) ∈ ℝ+ → (𝐵𝐴) # 0)
3936, 38syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐵𝐴) # 0)
4033, 37, 39divcanap1d 7840 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) = (𝑦𝐴))
4137mul02d 7460 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (0 · (𝐵𝐴)) = 0)
4221recnd 7112 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ)
4342subidd 7372 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐴𝐴) = 0)
4441, 43eqtr4d 2091 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (0 · (𝐵𝐴)) = (𝐴𝐴))
4537mulid2d 7102 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (1 · (𝐵𝐴)) = (𝐵𝐴))
4644, 45oveq12d 5557 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))) = ((𝐴𝐴)[,](𝐵𝐴)))
4731, 40, 463eltr4d 2137 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))))
48 0red 7085 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 0 ∈ ℝ)
49 1red 7099 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℝ)
5032, 36rerpdivcld 8751 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑦𝐴) / (𝐵𝐴)) ∈ ℝ)
51 eqid 2056 . . . . 5 (0 · (𝐵𝐴)) = (0 · (𝐵𝐴))
52 eqid 2056 . . . . 5 (1 · (𝐵𝐴)) = (1 · (𝐵𝐴))
5351, 52iccdil 8966 . . . 4 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (((𝑦𝐴) / (𝐵𝐴)) ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ+)) → (((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1) ↔ (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
5448, 49, 50, 36, 53syl22anc 1147 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1) ↔ (((𝑦𝐴) / (𝐵𝐴)) · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
5547, 54mpbird 160 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑦𝐴) / (𝐵𝐴)) ∈ (0[,]1))
56 eqcom 2058 . . . 4 (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ ((𝑦𝐴) / (𝐵𝐴)) = 𝑥)
5733adantrl 455 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑦𝐴) ∈ ℂ)
587adantrr 456 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑥 ∈ ℂ)
5937adantrl 455 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐵𝐴) ∈ ℂ)
6039adantrl 455 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝐵𝐴) # 0)
6157, 58, 59, 60divmulap3d 7873 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (((𝑦𝐴) / (𝐵𝐴)) = 𝑥 ↔ (𝑦𝐴) = (𝑥 · (𝐵𝐴))))
6256, 61syl5bb 185 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ (𝑦𝐴) = (𝑥 · (𝐵𝐴))))
6326adantrl 455 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
6463recnd 7112 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℂ)
6542adantrl 455 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → 𝐴 ∈ ℂ)
668, 14resubcld 7450 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ)
676, 66remulcld 7114 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · (𝐵𝐴)) ∈ ℝ)
6867adantrr 456 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 · (𝐵𝐴)) ∈ ℝ)
6968recnd 7112 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 · (𝐵𝐴)) ∈ ℂ)
7064, 65, 69subadd2d 7403 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑦𝐴) = (𝑥 · (𝐵𝐴)) ↔ ((𝑥 · (𝐵𝐴)) + 𝐴) = 𝑦))
71 eqcom 2058 . . . 4 (((𝑥 · (𝐵𝐴)) + 𝐴) = 𝑦𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴))
7270, 71syl6bb 189 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑦𝐴) = (𝑥 · (𝐵𝐴)) ↔ 𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴)))
737, 15mulcld 7104 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · 𝐴) ∈ ℂ)
7410, 73, 15subadd23d 7406 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (((𝑥 · 𝐵) − (𝑥 · 𝐴)) + 𝐴) = ((𝑥 · 𝐵) + (𝐴 − (𝑥 · 𝐴))))
757, 9, 15subdid 7482 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (𝑥 · (𝐵𝐴)) = ((𝑥 · 𝐵) − (𝑥 · 𝐴)))
7675oveq1d 5554 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · (𝐵𝐴)) + 𝐴) = (((𝑥 · 𝐵) − (𝑥 · 𝐴)) + 𝐴))
77 1cnd 7100 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → 1 ∈ ℂ)
7877, 7, 15subdird 7483 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) = ((1 · 𝐴) − (𝑥 · 𝐴)))
7915mulid2d 7102 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → (1 · 𝐴) = 𝐴)
8079oveq1d 5554 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 · 𝐴) − (𝑥 · 𝐴)) = (𝐴 − (𝑥 · 𝐴)))
8178, 80eqtrd 2088 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((1 − 𝑥) · 𝐴) = (𝐴 − (𝑥 · 𝐴)))
8281oveq2d 5555 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)) = ((𝑥 · 𝐵) + (𝐴 − (𝑥 · 𝐴))))
8374, 76, 823eqtr4d 2098 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ (0[,]1)) → ((𝑥 · (𝐵𝐴)) + 𝐴) = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
8483adantrr 456 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((𝑥 · (𝐵𝐴)) + 𝐴) = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
8584eqeq2d 2067 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑦 = ((𝑥 · (𝐵𝐴)) + 𝐴) ↔ 𝑦 = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))))
8662, 72, 853bitrd 207 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 = ((𝑦𝐴) / (𝐵𝐴)) ↔ 𝑦 = ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))))
871, 19, 55, 86f1ocnv2d 5731 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 896   = wceq 1259  wcel 1409   class class class wbr 3791  cmpt 3845  ccnv 4371  1-1-ontowf1o 4928  (class class class)co 5539  cc 6944  cr 6945  0cc0 6946  1c1 6947   + caddc 6949   · cmul 6951   < clt 7118  cle 7119  cmin 7244   # cap 7645   / cdiv 7724  +crp 8680  [,]cicc 8860
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-rp 8681  df-icc 8864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator