ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsalg GIF version

Theorem ceqsalg 2599
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
ceqsalg.1 𝑥𝜓
ceqsalg.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsalg (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem ceqsalg
StepHypRef Expression
1 elisset 2585 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 nfa1 1450 . . . 4 𝑥𝑥(𝑥 = 𝐴𝜑)
3 ceqsalg.1 . . . 4 𝑥𝜓
4 ceqsalg.2 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
54biimpd 136 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
65a2i 11 . . . . 5 ((𝑥 = 𝐴𝜑) → (𝑥 = 𝐴𝜓))
76sps 1446 . . . 4 (∀𝑥(𝑥 = 𝐴𝜑) → (𝑥 = 𝐴𝜓))
82, 3, 7exlimd 1504 . . 3 (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴𝜓))
91, 8syl5com 29 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) → 𝜓))
104biimprcd 153 . . 3 (𝜓 → (𝑥 = 𝐴𝜑))
113, 10alrimi 1431 . 2 (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))
129, 11impbid1 134 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102  wal 1257   = wceq 1259  wnf 1365  wex 1397  wcel 1409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-v 2576
This theorem is referenced by:  ceqsal  2600  sbc6g  2811  uniiunlem  3056  sucprcreg  4301  funimass4  5252  ralrnmpt2  5643
  Copyright terms: Public domain W3C validator