ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsex GIF version

Theorem ceqsex 2609
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
ceqsex.1 𝑥𝜓
ceqsex.2 𝐴 ∈ V
ceqsex.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsex (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ceqsex
StepHypRef Expression
1 ceqsex.1 . . 3 𝑥𝜓
2 ceqsex.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
32biimpa 284 . . 3 ((𝑥 = 𝐴𝜑) → 𝜓)
41, 3exlimi 1501 . 2 (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓)
52biimprcd 153 . . . 4 (𝜓 → (𝑥 = 𝐴𝜑))
61, 5alrimi 1431 . . 3 (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))
7 ceqsex.2 . . . 4 𝐴 ∈ V
87isseti 2580 . . 3 𝑥 𝑥 = 𝐴
9 exintr 1541 . . 3 (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 = 𝐴𝜑)))
106, 8, 9mpisyl 1351 . 2 (𝜓 → ∃𝑥(𝑥 = 𝐴𝜑))
114, 10impbii 121 1 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wal 1257   = wceq 1259  wnf 1365  wex 1397  wcel 1409  Vcvv 2574
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-v 2576
This theorem is referenced by:  ceqsexv  2610  ceqsex2  2611
  Copyright terms: Public domain W3C validator