Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsb7a GIF version

Theorem dfsb7a 1886
 Description: An alternative definition of proper substitution df-sb 1662. Similar to dfsb7 1883 in that it involves a dummy variable 𝑧, but expressed in terms of ∀ rather than ∃. For a version which only requires Ⅎ𝑧𝜑 rather than 𝑧 and 𝜑 being distinct, see sb7af 1885. (Contributed by Jim Kingdon, 5-Feb-2018.)
Assertion
Ref Expression
dfsb7a ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dfsb7a
StepHypRef Expression
1 nfv 1437 . 2 𝑧𝜑
21sb7af 1885 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 102  ∀wal 1257  [wsb 1661 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator