ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftr4 GIF version

Theorem dftr4 3888
Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr4 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem dftr4
StepHypRef Expression
1 df-tr 3884 . 2 (Tr 𝐴 𝐴𝐴)
2 sspwuni 3768 . 2 (𝐴 ⊆ 𝒫 𝐴 𝐴𝐴)
31, 2bitr4i 185 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 103  wss 2974  𝒫 cpw 3390   cuni 3609  Tr wtr 3883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604  df-in 2980  df-ss 2987  df-pw 3392  df-uni 3610  df-tr 3884
This theorem is referenced by:  tr0  3894  pwtr  3982
  Copyright terms: Public domain W3C validator