 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeq3 GIF version

Theorem foeq3 5131
 Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))

Proof of Theorem foeq3
StepHypRef Expression
1 eqeq2 2065 . . 3 (𝐴 = 𝐵 → (ran 𝐹 = 𝐴 ↔ ran 𝐹 = 𝐵))
21anbi2d 445 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵)))
3 df-fo 4935 . 2 (𝐹:𝐶onto𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐴))
4 df-fo 4935 . 2 (𝐹:𝐶onto𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 = 𝐵))
52, 3, 43bitr4g 216 1 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102   = wceq 1259  ran crn 4373   Fn wfn 4924  –onto→wfo 4927 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-4 1416  ax-17 1435  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-cleq 2049  df-fo 4935 This theorem is referenced by:  f1oeq3  5146  foeq123d  5149  resdif  5175  ffoss  5185
 Copyright terms: Public domain W3C validator