![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imanim | GIF version |
Description: Express implication in terms of conjunction. The converse only holds given a decidability condition; see imandc 785. (Contributed by Jim Kingdon, 24-Dec-2017.) |
Ref | Expression |
---|---|
imanim | ⊢ ((φ → ψ) → ¬ (φ ∧ ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annimim 781 | . 2 ⊢ ((φ ∧ ¬ ψ) → ¬ (φ → ψ)) | |
2 | 1 | con2i 557 | 1 ⊢ ((φ → ψ) → ¬ (φ ∧ ¬ ψ)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-in1 544 ax-in2 545 |
This theorem is referenced by: difdif 3063 npss0 3260 ssdif0im 3280 inssdif0im 3285 nominpos 7939 |
Copyright terms: Public domain | W3C validator |