ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in32 GIF version

Theorem in32 3194
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
in32 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ 𝐵)

Proof of Theorem in32
StepHypRef Expression
1 inass 3192 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
2 in12 3193 . 2 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
3 incom 3174 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐴𝐶) ∩ 𝐵)
41, 2, 33eqtri 2107 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1285  cin 2981
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-in 2988
This theorem is referenced by:  in13  3195  inrot  3197  imainrect  4816
  Copyright terms: Public domain W3C validator