![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infeq3 | GIF version |
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq3 | ⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 4557 | . . 3 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
2 | supeq3 6497 | . . 3 ⊢ (◡𝑅 = ◡𝑆 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐵, ◡𝑆)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝑅 = 𝑆 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐵, ◡𝑆)) |
4 | df-inf 6492 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
5 | df-inf 6492 | . 2 ⊢ inf(𝐴, 𝐵, 𝑆) = sup(𝐴, 𝐵, ◡𝑆) | |
6 | 3, 4, 5 | 3eqtr4g 2140 | 1 ⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ◡ccnv 4390 supcsup 6489 infcinf 6490 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-rab 2362 df-in 2988 df-ss 2995 df-uni 3622 df-br 3806 df-opab 3860 df-cnv 4399 df-sup 6491 df-inf 6492 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |