ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfaba1 GIF version

Theorem nfaba1 2199
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfaba1 𝑥{𝑦 ∣ ∀𝑥𝜑}

Proof of Theorem nfaba1
StepHypRef Expression
1 nfa1 1450 . 2 𝑥𝑥𝜑
21nfab 2198 1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  wal 1257  {cab 2042  wnfc 2181
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-nfc 2183
This theorem is referenced by:  nfopd  3594  nfimad  4705  nfiota1  4897  nffvd  5215
  Copyright terms: Public domain W3C validator