![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfnegd | GIF version |
Description: Deduction version of nfneg 7372. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfnegd | ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 7349 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | nfcvd 2221 | . . 3 ⊢ (𝜑 → Ⅎ𝑥0) | |
3 | nfcvd 2221 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 − ) | |
4 | nfnegd.1 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 2, 3, 4 | nfovd 5565 | . 2 ⊢ (𝜑 → Ⅎ𝑥(0 − 𝐴)) |
6 | 1, 5 | nfcxfrd 2218 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnfc 2207 (class class class)co 5543 0cc0 7043 − cmin 7346 -cneg 7347 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-v 2604 df-un 2978 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-iota 4897 df-fv 4940 df-ov 5546 df-neg 7349 |
This theorem is referenced by: nfneg 7372 |
Copyright terms: Public domain | W3C validator |