ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onuniss2 GIF version

Theorem onuniss2 4266
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onuniss2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onuniss2
StepHypRef Expression
1 unimax 3642 1 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1259  wcel 1409  {crab 2327  wss 2945   cuni 3608  Oncon0 4128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rab 2332  df-v 2576  df-in 2952  df-ss 2959  df-uni 3609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator