ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onuniss2 GIF version

Theorem onuniss2 4210
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onuniss2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onuniss2
StepHypRef Expression
1 unimax 3611 1 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wcel 1393  {crab 2307  wss 2914   cuni 3577  Oncon0 4072
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-rab 2312  df-v 2556  df-in 2921  df-ss 2928  df-uni 3578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator