ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.26-3 GIF version

Theorem r19.26-3 2460
Description: Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
r19.26-3 (∀𝑥𝐴 (𝜑𝜓𝜒) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒))

Proof of Theorem r19.26-3
StepHypRef Expression
1 df-3an 898 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21ralbii 2347 . 2 (∀𝑥𝐴 (𝜑𝜓𝜒) ↔ ∀𝑥𝐴 ((𝜑𝜓) ∧ 𝜒))
3 r19.26 2458 . 2 (∀𝑥𝐴 ((𝜑𝜓) ∧ 𝜒) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 𝜒))
4 r19.26 2458 . . . 4 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
54anbi1i 439 . . 3 ((∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 𝜒) ↔ ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ ∀𝑥𝐴 𝜒))
6 df-3an 898 . . 3 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒) ↔ ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ ∀𝑥𝐴 𝜒))
75, 6bitr4i 180 . 2 ((∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 𝜒) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒))
82, 3, 73bitri 199 1 (∀𝑥𝐴 (𝜑𝜓𝜒) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  w3a 896  wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-4 1416  ax-17 1435
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-ral 2328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator