ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ral2imi GIF version

Theorem ral2imi 2402
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.)
Hypothesis
Ref Expression
ral2imi.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ral2imi (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ral2imi
StepHypRef Expression
1 ral2imi.1 . . 3 (𝜑 → (𝜓𝜒))
21ralimi 2401 . 2 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 (𝜓𝜒))
3 ralim 2397 . 2 (∀𝑥𝐴 (𝜓𝜒) → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
42, 3syl 14 1 (∀𝑥𝐴 𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354
This theorem depends on definitions:  df-bi 114  df-ral 2328
This theorem is referenced by:  r19.26  2458  iinerm  6209  bj-findis  10491
  Copyright terms: Public domain W3C validator