ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldif GIF version

Theorem reldif 4505
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
reldif (Rel 𝐴 → Rel (𝐴𝐵))

Proof of Theorem reldif
StepHypRef Expression
1 difss 3108 . 2 (𝐴𝐵) ⊆ 𝐴
2 relss 4473 . 2 ((𝐴𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴𝐵)))
31, 2ax-mp 7 1 (Rel 𝐴 → Rel (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  cdif 2979  wss 2982  Rel wrel 4396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2611  df-dif 2984  df-in 2988  df-ss 2995  df-rel 4398
This theorem is referenced by:  difopab  4517
  Copyright terms: Public domain W3C validator