ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4b GIF version

Theorem rexcom4b 2596
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Hypothesis
Ref Expression
rexcom4b.1 𝐵 ∈ V
Assertion
Ref Expression
rexcom4b (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝜑,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem rexcom4b
StepHypRef Expression
1 rexcom4a 2595 . 2 (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
2 rexcom4b.1 . . . . 5 𝐵 ∈ V
32isseti 2580 . . . 4 𝑥 𝑥 = 𝐵
43biantru 290 . . 3 (𝜑 ↔ (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
54rexbii 2348 . 2 (∃𝑦𝐴 𝜑 ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
61, 5bitr4i 180 1 (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  wrex 2324  Vcvv 2574
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator