![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbco2v | GIF version |
Description: This is a version of sbco2 1881 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.) |
Ref | Expression |
---|---|
sbco2v.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
Ref | Expression |
---|---|
sbco2v | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2v.1 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
2 | 1 | sbco2vlem 1862 | . . 3 ⊢ ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑) |
3 | 2 | sbbii 1689 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑) |
4 | ax-17 1460 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑤[𝑧 / 𝑥]𝜑) | |
5 | 4 | sbco2vlem 1862 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) |
6 | ax-17 1460 | . . 3 ⊢ (𝜑 → ∀𝑤𝜑) | |
7 | 6 | sbco2vlem 1862 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
8 | 3, 5, 7 | 3bitr3i 208 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1283 [wsb 1686 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 |
This theorem is referenced by: nfsb 1864 equsb3 1867 sbn 1868 sbim 1869 sbor 1870 sban 1871 sbco2vd 1883 sbco3v 1885 sbcom2v2 1904 sbcom2 1905 dfsb7 1909 sb7f 1910 sbal 1918 sbal1 1920 sbex 1922 |
Copyright terms: Public domain | W3C validator |