Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ GIF version

Theorem sbequ 1737
 Description: An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbequ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))

Proof of Theorem sbequ
StepHypRef Expression
1 sbequi 1736 . 2 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))
2 sbequi 1736 . . 3 (𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑))
32equcoms 1610 . 2 (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑))
41, 3impbid 124 1 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 102  [wsb 1661 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662 This theorem is referenced by:  drsb2  1738  sbco2vlem  1836  sbco2yz  1853  sbcocom  1860  sb10f  1887  hbsb4  1904  nfsb4or  1915  sb8eu  1929  sb8euh  1939  cbvab  2176  cbvralf  2544  cbvrexf  2545  cbvreu  2548  cbvralsv  2561  cbvrexsv  2562  cbvrab  2572  cbvreucsf  2938  cbvrabcsf  2939  sbss  3357  cbvopab1  3858  cbvmpt  3879  tfis  4334  findes  4354  cbviota  4900  sb8iota  4902  cbvriota  5506  uzind4s  8629  cbvrald  10314  setindft  10477
 Copyright terms: Public domain W3C validator