ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2yz GIF version

Theorem sbco2yz 1853
Description: This is a version of sbco2 1855 where 𝑧 is distinct from 𝑦. It is a lemma on the way to proving sbco2 1855 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
sbco2yz.1 𝑧𝜑
Assertion
Ref Expression
sbco2yz ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbco2yz
StepHypRef Expression
1 sbco2yz.1 . . . 4 𝑧𝜑
21nfsb 1838 . . 3 𝑧[𝑦 / 𝑥]𝜑
32nfri 1428 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
4 sbequ 1737 . 2 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
53, 4sbieh 1689 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 102  wnf 1365  [wsb 1661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662
This theorem is referenced by:  sbco2h  1854
  Copyright terms: Public domain W3C validator