Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpidm23 GIF version

Theorem tpidm23 3498
 Description: Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm23 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}

Proof of Theorem tpidm23
StepHypRef Expression
1 tprot 3490 . 2 {𝐴, 𝐵, 𝐵} = {𝐵, 𝐵, 𝐴}
2 tpidm12 3496 . 2 {𝐵, 𝐵, 𝐴} = {𝐵, 𝐴}
3 prcom 3473 . 2 {𝐵, 𝐴} = {𝐴, 𝐵}
41, 2, 33eqtri 2080 1 {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}
 Colors of variables: wff set class Syntax hints:   = wceq 1259  {cpr 3403  {ctp 3404 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-3or 897  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2949  df-sn 3408  df-pr 3409  df-tp 3410 This theorem is referenced by:  tppreq3  3500
 Copyright terms: Public domain W3C validator