MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant125 Structured version   Visualization version   GIF version

Theorem ad5ant125 1352
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
ad5ant125.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad5ant125 (((((𝜑𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃)

Proof of Theorem ad5ant125
StepHypRef Expression
1 ad5ant125.1 . . . . 5 ((𝜑𝜓𝜒) → 𝜃)
213exp 1283 . . . 4 (𝜑 → (𝜓 → (𝜒𝜃)))
322a1dd 51 . . 3 (𝜑 → (𝜓 → (𝜏 → (𝜂 → (𝜒𝜃)))))
43imp 444 . 2 ((𝜑𝜓) → (𝜏 → (𝜂 → (𝜒𝜃))))
54imp41 618 1 (((((𝜑𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1056
This theorem is referenced by:  supxrge  39867  hoidmvlelem3  41132
  Copyright terms: Public domain W3C validator