MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16gb Structured version   Visualization version   GIF version

Theorem axc16gb 2132
Description: Biconditional strengthening of axc16g 2130. (Contributed by NM, 15-May-1993.)
Assertion
Ref Expression
axc16gb (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem axc16gb
StepHypRef Expression
1 axc16g 2130 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
2 sp 2051 . 2 (∀𝑧𝜑𝜑)
31, 2impbid1 215 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-12 2044
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702
This theorem is referenced by:  sbal  2461
  Copyright terms: Public domain W3C validator