MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-gen Structured version   Visualization version   GIF version

Axiom ax-gen 1796
Description: Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1808 shows the special case 𝑥. The converse rule of inference spi 2183 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1911). (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
ax-gen.1 𝜑
Assertion
Ref Expression
ax-gen 𝑥𝜑

Detailed syntax breakdown of Axiom ax-gen
StepHypRef Expression
1 wph . 2 wff 𝜑
2 vx . 2 setvar 𝑥
31, 2wal 1535 1 wff 𝑥𝜑
Colors of variables: wff setvar class
This axiom is referenced by:  gen2  1797  mpg  1798  mpgbi  1799  mpgbir  1800  hbth  1804  altru  1808  alfal  1809  stdpc6  2035  sbt  2071  ax13dgen3  2143  ceqsalg  3529  ceqsralv  3533  vtocl2OLD  3562  mosub  3704  sbcth  3787  sbciegf  3809  csbiegf  3916  sbcnestgw  4372  csbnestgw  4373  sbcnestg  4377  csbnestg  4378  csbnest1g  4381  mpteq2ia  5157  mpteq2da  5160  al0ssb  5212  ssopab2i  5437  relssi  5660  xpidtr  5982  funcnvsn  6404  caovmo  7385  ordom  7589  wfrfun  7965  tfrlem7  8019  pssnn  8736  findcard  8757  findcard2  8758  fiint  8795  inf0  9084  axinf2  9103  trcl  9170  axac3  9886  brdom3  9950  axpowndlem4  10022  axregndlem2  10025  axinfnd  10028  wfgru  10238  nqerf  10352  uzrdgfni  13327  ltweuz  13330  trclfvcotr  14369  fclim  14910  letsr  17837  distop  21603  fctop  21612  cctop  21614  ulmdm  24981  upgr0eopALT  26901  bnj1023  32052  bnj1109  32058  bnj907  32239  funen1cnv  32357  loop1cycl  32384  umgr2cycl  32388  hbimg  33054  fnsingle  33380  funimage  33389  funpartfun  33404  hftr  33643  filnetlem3  33728  bj-genr  33940  bj-genl  33941  bj-genan  33942  bj-mpgs  33943  bj-cbvalim  33978  bj-cbvexim  33979  bj-ax12v  33989  bj-ceqsalg0  34207  bj-ceqsalgALT  34209  bj-ceqsalgvALT  34211  bj-vtoclgfALT  34355  vtoclefex  34618  rdgeqoa  34654  exrecfnpw  34665  riscer  35281  disjALTV0  35999  ax12eq  36092  cdleme32fva  37588  eu0  39906  dfrcl2  40039  rr-grothprim  40656  pm11.11  40726  sbc3orgVD  41205  ordelordALTVD  41221  trsbcVD  41231  undif3VD  41236  sbcssgVD  41237  csbingVD  41238  onfrALTlem1VD  41244  onfrALTVD  41245  csbsngVD  41247  csbxpgVD  41248  csbresgVD  41249  csbrngVD  41250  csbima12gALTVD  41251  csbunigVD  41252  csbfv12gALTVD  41253  19.41rgVD  41256  unisnALT  41280  refsum2cnlem1  41314  dvnprodlem3  42253  sge00  42678  eusnsn  43281  aiota0def  43314  sprssspr  43663  spcdvw  44802  setrec2lem2  44817  onsetrec  44830
  Copyright terms: Public domain W3C validator