Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1224 Structured version   Visualization version   GIF version

Theorem bnj1224 31200
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1224.1 ¬ (𝜃𝜏𝜂)
Assertion
Ref Expression
bnj1224 ((𝜃𝜏) → ¬ 𝜂)

Proof of Theorem bnj1224
StepHypRef Expression
1 bnj1224.1 . . 3 ¬ (𝜃𝜏𝜂)
2 df-3an 1074 . . 3 ((𝜃𝜏𝜂) ↔ ((𝜃𝜏) ∧ 𝜂))
31, 2mtbi 311 . 2 ¬ ((𝜃𝜏) ∧ 𝜂)
43imnani 438 1 ((𝜃𝜏) → ¬ 𝜂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1074
This theorem is referenced by:  bnj1204  31408  bnj1279  31414
  Copyright terms: Public domain W3C validator