Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-bl Structured version   Visualization version   GIF version

Definition df-bl 19789
 Description: Define the metric space ball function. See blval 22238 for its value. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
df-bl ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
Distinct variable group:   𝑥,𝑑,𝑦,𝑧

Detailed syntax breakdown of Definition df-bl
StepHypRef Expression
1 cbl 19781 . 2 class ball
2 vd . . 3 setvar 𝑑
3 cvv 3231 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vz . . . 4 setvar 𝑧
62cv 1522 . . . . . 6 class 𝑑
76cdm 5143 . . . . 5 class dom 𝑑
87cdm 5143 . . . 4 class dom dom 𝑑
9 cxr 10111 . . . 4 class *
104cv 1522 . . . . . . 7 class 𝑥
11 vy . . . . . . . 8 setvar 𝑦
1211cv 1522 . . . . . . 7 class 𝑦
1310, 12, 6co 6690 . . . . . 6 class (𝑥𝑑𝑦)
145cv 1522 . . . . . 6 class 𝑧
15 clt 10112 . . . . . 6 class <
1613, 14, 15wbr 4685 . . . . 5 wff (𝑥𝑑𝑦) < 𝑧
1716, 11, 8crab 2945 . . . 4 class {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}
184, 5, 8, 9, 17cmpt2 6692 . . 3 class (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧})
192, 3, 18cmpt 4762 . 2 class (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
201, 19wceq 1523 1 wff ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
 Colors of variables: wff setvar class This definition is referenced by:  blfvalps  22235
 Copyright terms: Public domain W3C validator