Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-inftm Structured version   Visualization version   GIF version

Definition df-inftm 29706
 Description: Define the relation "𝑥 is infinitesimal with respect to 𝑦 " for a structure 𝑤. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Assertion
Ref Expression
df-inftm ⋘ = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))})
Distinct variable group:   𝑤,𝑛,𝑥,𝑦

Detailed syntax breakdown of Definition df-inftm
StepHypRef Expression
1 cinftm 29704 . 2 class
2 vw . . 3 setvar 𝑤
3 cvv 3195 . . 3 class V
4 vx . . . . . . . 8 setvar 𝑥
54cv 1480 . . . . . . 7 class 𝑥
62cv 1480 . . . . . . . 8 class 𝑤
7 cbs 15838 . . . . . . . 8 class Base
86, 7cfv 5876 . . . . . . 7 class (Base‘𝑤)
95, 8wcel 1988 . . . . . 6 wff 𝑥 ∈ (Base‘𝑤)
10 vy . . . . . . . 8 setvar 𝑦
1110cv 1480 . . . . . . 7 class 𝑦
1211, 8wcel 1988 . . . . . 6 wff 𝑦 ∈ (Base‘𝑤)
139, 12wa 384 . . . . 5 wff (𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤))
14 c0g 16081 . . . . . . . 8 class 0g
156, 14cfv 5876 . . . . . . 7 class (0g𝑤)
16 cplt 16922 . . . . . . . 8 class lt
176, 16cfv 5876 . . . . . . 7 class (lt‘𝑤)
1815, 5, 17wbr 4644 . . . . . 6 wff (0g𝑤)(lt‘𝑤)𝑥
19 vn . . . . . . . . . 10 setvar 𝑛
2019cv 1480 . . . . . . . . 9 class 𝑛
21 cmg 17521 . . . . . . . . . 10 class .g
226, 21cfv 5876 . . . . . . . . 9 class (.g𝑤)
2320, 5, 22co 6635 . . . . . . . 8 class (𝑛(.g𝑤)𝑥)
2423, 11, 17wbr 4644 . . . . . . 7 wff (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦
25 cn 11005 . . . . . . 7 class
2624, 19, 25wral 2909 . . . . . 6 wff 𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦
2718, 26wa 384 . . . . 5 wff ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦)
2813, 27wa 384 . . . 4 wff ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))
2928, 4, 10copab 4703 . . 3 class {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))}
302, 3, 29cmpt 4720 . 2 class (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))})
311, 30wceq 1481 1 wff ⋘ = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))})
 Colors of variables: wff setvar class This definition is referenced by:  inftmrel  29708  isinftm  29709
 Copyright terms: Public domain W3C validator