Detailed syntax breakdown of Definition df-tsms
Step | Hyp | Ref
| Expression |
1 | | ctsu 23286 |
. 2
class
tsums |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | vf |
. . 3
setvar 𝑓 |
4 | | cvv 3433 |
. . 3
class
V |
5 | | vs |
. . . 4
setvar 𝑠 |
6 | 3 | cv 1538 |
. . . . . . 7
class 𝑓 |
7 | 6 | cdm 5590 |
. . . . . 6
class dom 𝑓 |
8 | 7 | cpw 4534 |
. . . . 5
class 𝒫
dom 𝑓 |
9 | | cfn 8742 |
. . . . 5
class
Fin |
10 | 8, 9 | cin 3887 |
. . . 4
class
(𝒫 dom 𝑓
∩ Fin) |
11 | | vy |
. . . . . 6
setvar 𝑦 |
12 | 5 | cv 1538 |
. . . . . 6
class 𝑠 |
13 | 2 | cv 1538 |
. . . . . . 7
class 𝑤 |
14 | 11 | cv 1538 |
. . . . . . . 8
class 𝑦 |
15 | 6, 14 | cres 5592 |
. . . . . . 7
class (𝑓 ↾ 𝑦) |
16 | | cgsu 17160 |
. . . . . . 7
class
Σg |
17 | 13, 15, 16 | co 7284 |
. . . . . 6
class (𝑤 Σg
(𝑓 ↾ 𝑦)) |
18 | 11, 12, 17 | cmpt 5158 |
. . . . 5
class (𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))) |
19 | | ctopn 17141 |
. . . . . . 7
class
TopOpen |
20 | 13, 19 | cfv 6437 |
. . . . . 6
class
(TopOpen‘𝑤) |
21 | | vz |
. . . . . . . . 9
setvar 𝑧 |
22 | 21 | cv 1538 |
. . . . . . . . . . 11
class 𝑧 |
23 | 22, 14 | wss 3888 |
. . . . . . . . . 10
wff 𝑧 ⊆ 𝑦 |
24 | 23, 11, 12 | crab 3069 |
. . . . . . . . 9
class {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦} |
25 | 21, 12, 24 | cmpt 5158 |
. . . . . . . 8
class (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}) |
26 | 25 | crn 5591 |
. . . . . . 7
class ran
(𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}) |
27 | | cfg 20595 |
. . . . . . 7
class
filGen |
28 | 12, 26, 27 | co 7284 |
. . . . . 6
class (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})) |
29 | | cflf 23095 |
. . . . . 6
class
fLimf |
30 | 20, 28, 29 | co 7284 |
. . . . 5
class
((TopOpen‘𝑤)
fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦}))) |
31 | 18, 30 | cfv 6437 |
. . . 4
class
(((TopOpen‘𝑤)
fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦)))) |
32 | 5, 10, 31 | csb 3833 |
. . 3
class
⦋(𝒫 dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦)))) |
33 | 2, 3, 4, 4, 32 | cmpo 7286 |
. 2
class (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫
dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) |
34 | 1, 33 | wceq 1539 |
1
wff tsums =
(𝑤 ∈ V, 𝑓 ∈ V ↦
⦋(𝒫 dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) |