MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 26949
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 26948 . 2 class ζ
2 c1 11004 . . . . . . 7 class 1
3 c2 12177 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1540 . . . . . . . . 9 class 𝑠
6 cmin 11341 . . . . . . . . 9 class
72, 5, 6co 7346 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 26489 . . . . . . . 8 class 𝑐
93, 7, 8co 7346 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 7346 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1540 . . . . . . 7 class 𝑓
135, 12cfv 6481 . . . . . 6 class (𝑓𝑠)
14 cmul 11008 . . . . . 6 class ·
1510, 13, 14co 7346 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 12378 . . . . . 6 class 0
17 cc0 11003 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1540 . . . . . . . . 9 class 𝑛
20 cfz 13404 . . . . . . . . 9 class ...
2117, 19, 20co 7346 . . . . . . . 8 class (0...𝑛)
222cneg 11342 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1540 . . . . . . . . . . 11 class 𝑘
25 cexp 13965 . . . . . . . . . . 11 class
2622, 24, 25co 7346 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 14206 . . . . . . . . . . 11 class C
2819, 24, 27co 7346 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 7346 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 11006 . . . . . . . . . . 11 class +
3124, 2, 30co 7346 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 7346 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 7346 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 15590 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 7346 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 7346 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 11771 . . . . . . 7 class /
3834, 36, 37co 7346 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 15590 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1541 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 11001 . . . . 5 class
422csn 4576 . . . . 5 class {1}
4341, 42cdif 3899 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 3047 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 24794 . . . 4 class cn
4643, 41, 45co 7346 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 7302 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1541 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator