MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 25593
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 25592 . 2 class ζ
2 c1 10540 . . . . . . 7 class 1
3 c2 11695 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1536 . . . . . . . . 9 class 𝑠
6 cmin 10872 . . . . . . . . 9 class
72, 5, 6co 7158 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 25141 . . . . . . . 8 class 𝑐
93, 7, 8co 7158 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 7158 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1536 . . . . . . 7 class 𝑓
135, 12cfv 6357 . . . . . 6 class (𝑓𝑠)
14 cmul 10544 . . . . . 6 class ·
1510, 13, 14co 7158 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 11900 . . . . . 6 class 0
17 cc0 10539 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1536 . . . . . . . . 9 class 𝑛
20 cfz 12895 . . . . . . . . 9 class ...
2117, 19, 20co 7158 . . . . . . . 8 class (0...𝑛)
222cneg 10873 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1536 . . . . . . . . . . 11 class 𝑘
25 cexp 13432 . . . . . . . . . . 11 class
2622, 24, 25co 7158 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 13665 . . . . . . . . . . 11 class C
2819, 24, 27co 7158 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 7158 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 10542 . . . . . . . . . . 11 class +
3124, 2, 30co 7158 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 7158 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 7158 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 15044 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 7158 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 7158 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 11299 . . . . . . 7 class /
3834, 36, 37co 7158 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 15044 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1537 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 10537 . . . . 5 class
422csn 4569 . . . . 5 class {1}
4341, 42cdif 3935 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 3140 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 23486 . . . 4 class cn
4643, 41, 45co 7158 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 7115 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1537 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator