Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e1bir Structured version   Visualization version   GIF version

Theorem e1bir 39172
Description: Right biconditional form of e1a 39169. sylibr 224 is e1bir 39172 without virtual deductions. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e1bir.1 (   𝜑   ▶   𝜓   )
e1bir.2 (𝜒𝜓)
Assertion
Ref Expression
e1bir (   𝜑   ▶   𝜒   )

Proof of Theorem e1bir
StepHypRef Expression
1 e1bir.1 . 2 (   𝜑   ▶   𝜓   )
2 e1bir.2 . . 3 (𝜒𝜓)
32biimpri 218 . 2 (𝜓𝜒)
41, 3e1a 39169 1 (   𝜑   ▶   𝜒   )
Colors of variables: wff setvar class
Syntax hints:  wb 196  (   wvd1 39102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-vd1 39103
This theorem is referenced by:  en3lplem2VD  39393
  Copyright terms: Public domain W3C validator