 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equtrr Structured version   Visualization version   GIF version

Theorem equtrr 1935
 Description: A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
equtrr (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))

Proof of Theorem equtrr
StepHypRef Expression
1 equtr 1934 . 2 (𝑧 = 𝑥 → (𝑥 = 𝑦𝑧 = 𝑦))
21com12 32 1 (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921 This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695 This theorem is referenced by:  equeuclr  1936  equequ2  1939  equtr2OLD  1942  equvinv  1945  equvinivOLD  1947  equvinvOLD  1948  equvelv  1949  ax12v2  2035  ax12vOLD  2036  2ax6elem  2436  wl-spae  32309  ax12eq  33068  sbeqalbi  37447  ax6e2eq  37618  ax6e2eqVD  37989
 Copyright terms: Public domain W3C validator