MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falnanfal Structured version   Visualization version   GIF version

Theorem falnanfal 1567
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falnanfal ((⊥ ⊼ ⊥) ↔ ⊤)

Proof of Theorem falnanfal
StepHypRef Expression
1 nannot 1493 . 2 (¬ ⊥ ↔ (⊥ ⊼ ⊥))
2 notfal 1559 . 2 (¬ ⊥ ↔ ⊤)
31, 2bitr3i 266 1 ((⊥ ⊼ ⊥) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wnan 1487  wtru 1524  wfal 1528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-nan 1488  df-tru 1526  df-fal 1529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator