Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iidn3 Structured version   Visualization version   GIF version

Theorem iidn3 37625
Description: idn3 37758 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
iidn3 (𝜑 → (𝜓 → (𝜒𝜒)))

Proof of Theorem iidn3
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
212a1i 12 1 (𝜑 → (𝜓 → (𝜒𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  trintALT  38036
  Copyright terms: Public domain W3C validator