Mathbox for Jarvin Udandy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvrx5 Structured version   Visualization version   GIF version

Theorem mdandyvrx5 40487
 Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvrx5.1 (𝜑𝜁)
mdandyvrx5.2 (𝜓𝜎)
mdandyvrx5.3 (𝜒𝜓)
mdandyvrx5.4 (𝜃𝜑)
mdandyvrx5.5 (𝜏𝜓)
mdandyvrx5.6 (𝜂𝜑)
Assertion
Ref Expression
mdandyvrx5 ((((𝜒𝜎) ∧ (𝜃𝜁)) ∧ (𝜏𝜎)) ∧ (𝜂𝜁))

Proof of Theorem mdandyvrx5
StepHypRef Expression
1 mdandyvrx5.2 . . . . 5 (𝜓𝜎)
2 mdandyvrx5.3 . . . . 5 (𝜒𝜓)
31, 2axorbciffatcxorb 40406 . . . 4 (𝜒𝜎)
4 mdandyvrx5.1 . . . . 5 (𝜑𝜁)
5 mdandyvrx5.4 . . . . 5 (𝜃𝜑)
64, 5axorbciffatcxorb 40406 . . . 4 (𝜃𝜁)
73, 6pm3.2i 471 . . 3 ((𝜒𝜎) ∧ (𝜃𝜁))
8 mdandyvrx5.5 . . . 4 (𝜏𝜓)
91, 8axorbciffatcxorb 40406 . . 3 (𝜏𝜎)
107, 9pm3.2i 471 . 2 (((𝜒𝜎) ∧ (𝜃𝜁)) ∧ (𝜏𝜎))
11 mdandyvrx5.6 . . 3 (𝜂𝜑)
124, 11axorbciffatcxorb 40406 . 2 (𝜂𝜁)
1310, 12pm3.2i 471 1 ((((𝜒𝜎) ∧ (𝜃𝜁)) ∧ (𝜏𝜎)) ∧ (𝜂𝜁))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   ⊻ wxo 1461 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 386  df-xor 1462 This theorem is referenced by:  mdandyvrx10  40492
 Copyright terms: Public domain W3C validator