Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvrx6 Structured version   Visualization version   GIF version

Theorem mdandyvrx6 40488
Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvrx6.1 (𝜑𝜁)
mdandyvrx6.2 (𝜓𝜎)
mdandyvrx6.3 (𝜒𝜑)
mdandyvrx6.4 (𝜃𝜓)
mdandyvrx6.5 (𝜏𝜓)
mdandyvrx6.6 (𝜂𝜑)
Assertion
Ref Expression
mdandyvrx6 ((((𝜒𝜁) ∧ (𝜃𝜎)) ∧ (𝜏𝜎)) ∧ (𝜂𝜁))

Proof of Theorem mdandyvrx6
StepHypRef Expression
1 mdandyvrx6.1 . . . . 5 (𝜑𝜁)
2 mdandyvrx6.3 . . . . 5 (𝜒𝜑)
31, 2axorbciffatcxorb 40406 . . . 4 (𝜒𝜁)
4 mdandyvrx6.2 . . . . 5 (𝜓𝜎)
5 mdandyvrx6.4 . . . . 5 (𝜃𝜓)
64, 5axorbciffatcxorb 40406 . . . 4 (𝜃𝜎)
73, 6pm3.2i 471 . . 3 ((𝜒𝜁) ∧ (𝜃𝜎))
8 mdandyvrx6.5 . . . 4 (𝜏𝜓)
94, 8axorbciffatcxorb 40406 . . 3 (𝜏𝜎)
107, 9pm3.2i 471 . 2 (((𝜒𝜁) ∧ (𝜃𝜎)) ∧ (𝜏𝜎))
11 mdandyvrx6.6 . . 3 (𝜂𝜑)
121, 11axorbciffatcxorb 40406 . 2 (𝜂𝜁)
1310, 12pm3.2i 471 1 ((((𝜒𝜁) ∧ (𝜃𝜎)) ∧ (𝜏𝜎)) ∧ (𝜂𝜁))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wxo 1461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-xor 1462
This theorem is referenced by:  mdandyvrx9  40491
  Copyright terms: Public domain W3C validator