Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm10.12 Structured version   Visualization version   GIF version

Theorem pm10.12 38874
Description: Theorem *10.12 in [WhiteheadRussell] p. 146. In *10, this is treated as an axiom, and the proofs in *10 are based on this theorem. (Contributed by Andrew Salmon, 17-Jun-2011.)
Assertion
Ref Expression
pm10.12 (∀𝑥(𝜑𝜓) → (𝜑 ∨ ∀𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem pm10.12
StepHypRef Expression
1 19.32v 1909 . 2 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))
21biimpi 206 1 (∀𝑥(𝜑𝜓) → (𝜑 ∨ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wal 1521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879
This theorem depends on definitions:  df-bi 197  df-or 384  df-ex 1745
This theorem is referenced by:  pm11.12  38891
  Copyright terms: Public domain W3C validator