MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.36 Structured version   Visualization version   GIF version

Theorem pm5.36 918
Description: Theorem *5.36 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.36 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜓 ∧ (𝜑𝜓)))

Proof of Theorem pm5.36
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21pm5.32ri 667 1 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜓 ∧ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-an 384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator