Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  wlel GIF version

Theorem wlel 392
 Description: Add conjunct to left of l.e.
Hypothesis
Ref Expression
wle.1 (a2 b) = 1
Assertion
Ref Expression
wlel ((ac) ≤2 b) = 1

Proof of Theorem wlel
StepHypRef Expression
1 an32 83 . . . 4 ((ac) ∩ b) = ((ab) ∩ c)
21bi1 118 . . 3 (((ac) ∩ b) ≡ ((ab) ∩ c)) = 1
3 wle.1 . . . . 5 (a2 b) = 1
43wdf2le2 386 . . . 4 ((ab) ≡ a) = 1
54wran 369 . . 3 (((ab) ∩ c) ≡ (ac)) = 1
62, 5wr2 371 . 2 (((ac) ∩ b) ≡ (ac)) = 1
76wdf2le1 385 1 ((ac) ≤2 b) = 1
 Colors of variables: term Syntax hints:   = wb 1   ∩ wa 7  1wt 8   ≤2 wle2 10 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator